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I. INTRODUCTION 

One of the basic categories of control theory is termed the estimation 

problem. It has to do with the problem of estimating the states of a sys­

tem in a stochastic environment; that is, by means of operations performed 

upon the output measurements of the system, estimates of the stochastic 

signals and/or stochastic disturbances are formed. The operations are 

functions of the statistical properties of the signals and disturbances, 

the nature of the system, and the relationships of the measurements to the 

system, as determined by the solution of some criterion for what consti­

tutes good, or optimum, estimates. 

The initial significant work on this problem was by Wiener (j) who 

developed the condition to be satisfied for optimal estimation in a mean-

sguared-error sense; this condition is generally referred to as the Wiener-

Hopf integral equation. He also developed the solution for the case of 

stationary, Gaussian statistics. This work and further extensions and 

modifications by others are known as "Wiener filters". The use of trans­

formations into the frequency domain characterizes much of the work, and 

the results are usually implemented as linear, analog-type filters. Non-

time-stationary and multiple input-output problems are difficult to solve 

by the Wiener approach. 

Kalman (3) treated this estimation problem from a different point of 

view and formulated the equivalent of the Wiener-Hopf integral equation as 

a vector-matrix differential equation in state space. He developed the 

solution for the discrete, linear system with Gaussian statistics as a set 

of vector-matrix recursive relationships which are commonly termed the 

"Kalman filter". The advantages of the Kalman filter are that the 
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computations are performed recursively, in the time domain (thereby being 

well-suited for handling by computers), and are readily applicable to non-

stationary and multiple input-output systems. 

A host of study areas are closely related to, or are sub-categories of, 

the Kalman-filter theory; some of them treat problems of stability, sensi­

tivity, smoothing, prediction, effects of different types of sampling, 

linear approximations, system identification, and parameter estimation. 

It is this last topic which is the subject of this dissertation, so further 

explanation is in order. It is assumed that a Kalman filter is to be 

developed for use on some linear system about which the following state­

ments can be made; 

1. The system is completely specified, including the "filters" needed 

to convert Gaussian "white-noise" sources into the actual inputs. 

2. The measurement device is specified, 

3. The root-mean-square amplitudes of the inputs may or may not be 

known. 

4. The measurement errors have Gaussian, time-independent statistics 

with zero means and variances which may or may not be known. 

In order to apply the Kalman filter, the covariances of the measurement 

errors and the inputs are required. If either, or both, covariance matrices 

are unknown, due to lack of information as mentioned in parts 3 and k 

above, then covariance parameter estimation must be employed. 

Methods are developed in the later sections which enable one to make 

estimates of the necessary covariance parameters when the measurement-

error and/or the input covariances are missing. These estimates cause the 

Kalman filter to be adaptive to unknown statistics, provided the statistics 
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do not fluctuate too rapidly. The estimation of the covariances of measure-, 

ahles is covered in nearly any standard text on statistics, but so far as 

is known to this author, no literature exists which expands the concepts 

to enable estimation of the two principle covariance matrices associated 

with the control-system and measurement equations. 

The principle of maximum likelihood is used as a starting point for 

the development of the estimation equations. Certain compromises are made 

in order to obtain usable results. Several situations are studied, per­

taining to which particular set of covariances is sought, measurement 

redundancy, observability of the system, etc. For each situation, two 

estimation equations are developed and examined; one being rather crude 

but easy to apply, the other holding promise of greater accuracy, but 

being significantly more elaborate. 
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II. REVim OF KALI-IM FILTERING 

A review of Kalman filtering would seem to be in order, primarily 

so that many of the necessary symbols can be properly introduced and 

defined. In addition, the Kalman-filter results are required later. 

The system itself is characterized-by a vector-matrix differential 

equation (6,8), 

x(t) = A(t)x(t) + B(t)u(t) • (1) , 

where x(t) is à k-vector of the state variables 

u(t) is an m-vector of the Gaussian white-noise, independent 

inputs 

A(t) is a k-by-k coefficient matrix for the system 

B(t) is a k-by-ffi input matrix. 

The general solution of this equation is expressed as 

t 
x(t) = $(t,tQ)x(tQ) + / $(t,T)B(T)u(T) dT (2) 

^0 

where $(t,tQ) is the k-by-k transition matrix. 

For convenience, the integral in the general solution is generally 

designated by a k-element response vector, which will be defined here as 

t 
g(t,tQ) = / $(t,T)B(T)u(T) dx (3) 

^0 

Thus x(t) = +  g ( t , t ç ^ )  ( h )  

The measurements are related to the states of the system by the 

equation 

y(t) = M(t)x(t) + v(t) (5) 

where y(t) is an r-vector of the measurements 
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v(t) is an r-vector of the measurement errors 

M(t) is an r-hy-k measurement matrix. 

Since the measurements are made at discrete instants of time, a sub­

script notation is used in the equations to describe the system and the 

measurement relation at the times of the measurements. 

y = M X + V 
n  n  n  n  <  ( g )  

"n = Vn-1 + «n } 
Where = y(t^), 

®n = e'*n>Vl'-

The circumflex, , and the tilde, , are used to denote an estimated 

quantity and an error quantity, respectively. Thus the state vector, x^, 

can be expressed as the sum of an estimate and an estimation error. 

\ = k / i  *  Vj <•" 

The subscript n/j denotes that the variable was obtained as the result of 

an estimation of the state at time t^ by using measurements made up to 

and including those at time t^. If J ^ n, then x^y^ is commonly termed 

the a posteriori estimate of x^. If j < n, then x^y^ is called the a 

priori estimate of x^. Another way to classify the various situations is 

to say that if j = n, then filtering is being accomplished; if j > n, it 

is smoothing; and if j < n, it is predicting. 

The Kalman filter equations can be derived by several different 

approaches. Some of these are summarized and compared by Lee (4), A 

method divised by Battin (l) relies on assuming the form of the estimate 

Vn = Vn-1 ̂  "n's'n " Vn-l' 
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where is a k-by-r weighting matrix, 

^n/n-1 *n ^n-l/n-1 
(9) 

^n/n-1 ^'^n ^n/n-1 

and is determined by minimizing the estimation-error variances of the 

states. By definition, 

1. TT (10) 

is the estimation-error covariance matrix of the states, so the criterion 

is 

9 W 
n 

= 0 (11) 

When this operation is carried out, a set of recursive equations are ob­

tained which, with equations 8 and 9,constitute the Kalman filter. 

"n = ̂ n/n-l "n \ln-l K " 

^n/n-1 = «n Vl/n-1 

^n/n = ^n/n-1 " "n'Vn/n-l "n + 'n> "n 

T 
where V = E[v v ], the measurement-error covariance 

n n n ' 

T 
= E[g^g^], the response covariance 

and 0 = E[v^gj], for all i, J 

0 = E[v^vJ], for i # j 

0 = E[g^gJ], for i f j. 

The parameters which must be known in order to apply the Kalman fil­

ter are the transition matrix, the measurement matrix, M, the measure­
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ment-error covariance matrix, V, the response covariance matrix, H, plus 

initial conditions. If any of these quantities are inaccurately known, 

hut are used in these equations anyway, the resultant estimates of the 

states will not be optimum and the estimation-error covariances will be 

inaccurate. 

Methods for estimating V and/or H are developed in the sections 

which follow. 
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III. SELECTION OF THE ESTIMATION CRITERION 

In order to make estimations of the V and/or H matrices, a criterion 

must be selected. For example, the criterion used in section II for the 

development of the Kalman filter was the minimization of the sum of the 

estimation-error variances with respect to the weighting matrix, A com-

monly-used statistical method of estimation is known as the principle of 

maximum likelihood (5), and it would appear that this method offers a way 

to approach the problem. 

The likelihood function is the probability density function of the 

measurements, conditional upon the quantities to be estimated. For a 
. " 

single measurement vector, y^, the likelihood function is simply the 

Gaussian density function for a variable with zero mean, 

(2,)^ |Y^|^ 

where 

\ VnJ = Wn * \ 

\ = Vn-l'ï * "n 

(14) 

For two measurement vectors, y^ and y^_^, it is a Joint density function, 

l/VT -I'v » 

= f'i'n 1' —;—r = ' (15) n-1 r 1 

(2Tt)2 \ C J ^  

where 
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^n/n-1 "" ^n/n-1 

T (16) 

For larger numbers of measurement vectors, the likelihood function is a 

Joint density function of increased complexity, but still it can be ex­

pressed without too much trouble by extension of the previous work. 

P^^n'^n-l'-'-'^i) = P^ynl^n-l'-'-'^i^ P^^n-l ^i^ 

1 1,~ T -1 ̂  \ 

n [|C I ^ e ^ J ^j/J-1 ] (17) 
J=i+1 ^ 

Suppose that an estimate for is desired. If the single-measure-

ment likelihood function is maximized with respect to and solved for 

the estimate, V^, there would appear to be no problem. But if a multi-

measurement likelihood function is similarly maximized, the solution for 

depends upon which are not known. The proper procedure 

would be to maximize the likelihood function with respect to all the V's 

involved, V , V V., and solve the resulting set of n+l-i vector-
n' n-1 i' 

A 
matrix equations for the V's; or, if it were known that V were constant 

or very nearly constant, replace V^, V^_^,...,Vj^ by just V, maximize with 
A '' 

respect to V, and solve the resultant high-order equation for V. Neither 

of these procedures is feasible for any nontrivial system. 

The objective is to obtain relatively simple expressions for the . 

estimates; expressions which are recursive would be especially useful for 

computer applications. Since it is not practical to form estimates of 
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the same time is "being estimated, then previously ob­

tained estimates must be used, V is incorporated into the multi-measure-

ment likelihood function only by way of the .factor p(y^|yj^_j_,. ..,y^) so 

maximizing the likelihood function with respect to is the same as maxi­

mizing this conditional probability density function. The procedure can 

thus be expressed as performing the following operations and solving for 

' 
V 
n 

= 0 (18) 

V -»• V 
n n 

^n/n-1 ̂  ̂n/n-1 

where 

^n/n-1 ~ ̂ n/n-1 
n—1 n—1* n—l/n—2 n—1/n—2 

• V = [an "average" of V ^.,V ] 
n—X n—X 1 

The "average" will be discussed further in the next section. 

Entirely similar expressions can readily be made if is to be 

estimated. Due to the dependence of upon *^^-1*"'*^2 *^1* use 

of the single-measurement likelihood function must rely upon previous 

estimates of the H's. 

Thus there are two possible ways of forming estimates of the covari-

ance matrices. One way is to simply maximize the single-measurement like­

lihood function, p(y^), to form estimates for each of the measurements, 

and then average. The other is to maximize the conditional probability 

density function, p(y^|y^ ,y^), to form estimates, and then average. 

The first is overly simple, but useful in some respects; the second ought 
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to result in better estimates, but at the cost of added complication. In 

order to avoid confusion with the normal method of maximum likelihood 

estimation, these two estimation methods will hereafter be referred to 

as maximum-probability (W) estimation and maximum-conditional-probability 

(MCP) estimation, respectively. 
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IV. ESTIMATION OF THE MEASUREMENT-ERROR COVARIANCE 

The first situation to be postulated is one in which all the para­

meters necessary to the Kalmein filter are known, except for the measure­

ment-error covariance matrices, the Vs. 

A. Maximum-Probability Estimation of V 

The MP estimation of V involves the performance of the following 

operation, 

9 p(y^) 

3 V 
n 

= 0 (19) 

V ->-v 
n n 

and solving for V^. The differentiations, of various matrix expressions 

by matrices are performed in Appendix A and the results of part 9 have 

direct bearing on equation 19, leading to 

(20) 
V -»-v 
n n 

V -+V 
n n 

^ n = V n - W n  ,  .  

As can readily be seen, this is quite a rough estimate of since 

only one measurement vector, y^, is used. In fact, as it stands, some 

of the major diagonal elements of may be negative-valued unless an 

additional restriction is imposed. However, this is of no great concern 

since it is highly unlikely that such a simple estimate would ever be used 

by itself as a reasonable estimate of V , , J 

The expected value of this estimate is 
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= E[y_^y^ -

=  ̂ n-Wn 

= (22) 

so the estimate is unbiased. The variance of the estimate is an item of-

interest, but just what is meant by the word "variance" when it is applied 

to a matrix? Here it will be used to denote a matrix whose elements are 

the variances of the corresponding elements of the estimate. In this 

instance, it is 

(variance of V ) .= E[(V -V )*(V -V )] 
n n n n n 

= Y *Y + c[Y ].c[Y^]'^ (23) 
n n n n 

The non-standard matrix operations, * and c[ ], are explained in Appendix 

B. The evaluation of the variance is performed in Appendix C, part 1, 

The variance matrix is useful for an element-by-element examination 

of the estimate, but what is usually sought is a scalar measure that shows 

just how closely the entire estimate comes to agreeing with the parameter 

being estimated. In section II, such a measure for the estimate of the 

state vector was the trace of the state-error covariance matrix, A similar 

measure can be specified for the estimate of the measurement-error covari­

ance matrix. It is the trace of the expected-value of the quadradic 

estimation-error matrix. By quadradic estimation-error matrix is meant the 

product, ()(^n"^n^ the expected value of this is 

= Vn + 

as developed in Appendix C, part 2. Each major-diagonal element of this 
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matrix is the sxim of the variance elements of the corresponding row or 

column of the variance matrix. Thus the trace of this matrix is equal to 

the sum of all the variance elements. This measure will he referred to 

2 
as the (norm) of the estimation variances, 

[(norm)^ of the variance of V ] = tr(Y Y ) + [tr(Y )]^ (25) 
n n n n 

In some respects the variance matrix is quite useful, hut the quadra­

dic matrix uses conventional notation and so is easier to manipulate. The 

(norm)^ can be expressed as either the trace of the expected quadradic 

matrix or as the variance matrix, pre- and post-multiplied by the unit 

vector (see Appendix B). 

By way of comparison, note that if the measurement-error vector, v^, 

A Ip 
were directly available for use in estimating by letting = v^v^, 

then the corresponding equations would be 

(variance of V j  = V *V + c[V ]*c[V 
n n n n n 

E[quadradic of (V -V )] = V «V + V tr(V ) V (26) 
n n n n n n 

[(norm)^ of variance of V ] = tr(V «V ) + [tr(V ) 
n n n n 

1. Averaged estimation for time-stationary V 

The usual estimation procedure, when it is known that the measurements 

are independent and the statistics are time-stationary, is to form an 

average. For example, if a number, m, of the measurement-error vectors 

were available, the principle of maximum likelihood would automatically 

lead one to the development of a "best" estimate that is 

(''best = ̂  4 A 
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[(norm)^ of variance of V] = ̂ [tr(V*V) + [tr(V)^] (28) 

Similarly, it would seem likely that an average of the individual 

estimates obtained from the measurement vectors would be a better overall 

estimate of a time-stationary V. 

1=1 1=1 

Since the measurement vectors are not independent, the expression for the 

norm will involve cross-product terms. 

P — >  1  ̂  ^  - i I I a  
[(norm)'' of V - variance] = tr[E{[- Z (V.-V)].[- Z (V,-V)]}] 

i=l ^ j=l 

-1 n ^ ^ n i-1 ^ * 
= -~tr{E[ Z (V.-V)(V.-V)] + 2E[ Z Z (V.-V)(V -V) ]} (30) 

n'^ i=l ^ ^ i=2 j=l ^ ^ 

These cross-product terms can be evaluated as follows: 

E[(V.-V)(Vj-V)].^j = E[(yy^-Y).(yy^-Y)j] = E[(yy"^).(yy^)^] _ 

m 

+  I  t r ( M , - X X ) ]  
1 1 j+l J J 

Therefore, 
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p — 1 ^ P 
[(norm) of V - variance] = I [tr(Y.Y.) + (tr[Y.]) ] 

" n 1=1 ^ ̂  ^ 

n i-1 m m 

+ 2 Z Z [tr{ (M. X ) (M. $. ' ' , _X,M, ) } 
^_2 j—2 J J J IX j*'"X j j 

+ {tr(M^$^'..<I.j_|_^XjM^)}^]} (31) 

2 
The number of terms to be handled varies as n and the coefficient of the 

overall experession is so convergence of V to the value V is not 
n 

automatically guaranteed. The requirement for a system to be asymptotical­

ly stable (8) is that the expression approach the null matrix 

as the difference between i and j becomes large. Thus, if the system is 

asymptotically stable, the cross-product terms in the equation for the 

norm become insignificant if i>>j and the remaining terms do not increase 

in magnitude indefinitely, so convergence does occur. 

2. Averaged estimation for slov-time-varying V 

For. those instances where V may be, or is known to be, slowly varying 

with time, other "averages" are more appropriate. The average used should 

have the property of being unbiased and should produce a result that de­

pends most strongly on the latest measurements. 

a. Truncated average This average incorporates only the "p" most-

recent estimates, 

n 
v_._ = ̂  Z (V.) , p < n 

(32) 
"^ i=n-p+l 

=  i  V  +  V  ^  -  V  
p n n-l;p p n-p 

As can be seen though, this average, when expressed in the recursive form. 
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requires that the most-recent p+1 estimates of V be kept in a "memory". 

b. Exponentially-veiphted average ,By assigning exponential 

weights to the measurements as follows, the more recent measurements tend 

to determine the nature of the result, 

' <\;p' 
1-e 

exp. 

> (33) 

1 n 

1-e P 
V + 

1-e" P 
n+1 n n+1 

l-e" l-e" "T 
exp. 

J 
This average avoids the need for "memory", but the evaluation of the ex­

ponential terms may be disadvantageous, 

c. Limiting case of exponentially-weighted average If the "p" 

used in the exponential average is allowed to become very large, then that 

average becomes 

Examination shows that this average is valid even if p is not large. 

The expression for the norm can be determined readily for the truncat­

ed average, but some complications arise for the other two averages. The 

requirement for the system to be asymptotically stable in order for con­

vergence to occur also holds for these averages. 

B. Maximum-Conditional-Probability Estimation of V 

The MCP estimation of V involves the performance of the following 

operation. 
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' 
3 V 

n 

= 0 (35) 

V ^ V , 
n n/n 

p ^ 
n/n-1 n/n-1 

and solving for V^. Carrying out the differentiation results in the 

expression 

° " ̂n^"^n\/n-l^n/n-l^n^ 
V -»• V / 
n n/n 

P ^ P 
n/n-1 n/n-1 

(36) 

and 

^n/n ^n/n-l^n/n-1 ~ ̂ ^n^n/n-l^^n 

If the initial state estimation-error covariance, P^y^, is known then 

E[V^/J=V^ 

and by induction, using the recursive equation-set 12, 

(37) 

(38) 

(39) 

Thus this estimator is also unbiased. 

The variance matrix and norm cannot be easily evaluated for this 

estimate because ^ depends upon all the preceding estimates in quite 

a complicated fashion. However, since ^ is optimum, the minimum 

possible norm would occur if P^y^ ̂  equaled P^y^ Thus 

[(norm)^ of V , - variance] , = tr(C C ) + [tr(C ) ]^  (Uo) 
n/n Biin* n n n 

It may be noticed that and differ only to the extent that the 

in the expression is replaced by the P^y^ ̂  in the expression: 
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Y = V + M X 
n n n n n 

m , (Ul) 
C = V + M p / 
n n n n/n-1 n 

and, since 

<''2' 

The MCP estimator should be better than the MP estimator, provided that 

Pn/n 2 d.oGS not exhibit poor "transient" behavior when only a small number 

of measurements are available. In a particular situation, a running 

evaluation and comparison can be made of and P^y^ ̂  so that a decision 

can be made as to which estimation method should be used. 

The sequence of steps to be performed for making MCP estimates of 

the V's of a particular system is as follows: 

1. Determine the initial state vector, x^, as accurately as possible, 

using whatever technique is available. Also determine the co-

variance matrix for the error in this estimate of Xq as well as 

the circumstances permit; i.e., estimate Pq^q» 

2. Calculate these predictions: 

r\j 
Vo = * A ' ̂1/0 = %/0' 5^1/0 = - J'l/O 

3. Estimate V^. 

^ «x, «vT — T 

4. Form an average estimate for V^. , 

^1 = ̂  ̂1 + ̂  ̂0 

where is an initial rough estimate of V, and q is a scalar 

weight that indicates the degree of confidence in V with respect 
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to V^. 

5. Calculate 

\ *  V ' '  

Note that cannot be used in place of in this expression 

because then + V^) = Y^/O^l/O is singular. 

«• ^1/1 = ̂ 1/0 - "l< Vl/0«ï ̂  

7. + "A/0 

8. Pg/l ° y 1/1^2 * "2 

9. Xg/l *2^1/1 ' ̂2/1 ~ ̂ 2^2/1 * ^2/1 ^2 " ̂2/1 

10. Vg = ̂ 2/1 ̂ 2/1 " '^2^2/1^^2 

11. Form an average estimate for in any of several different ways, 

depending upon whether V is, or is not, known to be time-, 

stationary. For example, ^ 

"2 = ^2 + (#1 

is a suitable average if V is time-stationary. 

12. Continue in this fashion by cycling back to step 5 and increment­

ing the subscripts by one. 
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V. ESTmTIOn OF THE RESPONSE COVARIMCE 

The situation postulated in this section is that all the parameters 

necessary to the Kalman filter are known, except for the response co-

variance matrices, the H's, 

A. Maximum-Probability Estimation of H 

The MP estimation of H requires the performance of the following 

operation, 

3 p(y^) 

9 11 
n 

= 0 (1^3) 

H H 
n n 

where 

The result is 

{ k h )  

^n-1 ^n-1 

The nature of the solution for depends greatly upon the dimensionality 

of the measurement matrix, M^. is an r-by-k matrix and, for convenience, 

it will be assumed that it is of maximum possible rank; that is, the rank 

is either r or k, whichever is smaller. The descriptive names applied to 

are; "square" if r equals k, "horizontal" if r is less than k, and 

"vertical" if r is greater than k. 
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1. Solution when M is square 

When is square, the solution for is quite simple. 

Vn' 

Wn = Vn - \ - "nVn-l^X 

i - 'n - ''*5' 

If the initial state covariance, Xq, is known, then 

E[H^] = (U6) 

and by induction, 

E[H ] = H (47) 
n n 

so the estimators are unbiased for known initial conditions. 

The norm, for n equal to 1, is developed in Appendix D, part 1. 

[(norm)^ of - variance] = tr[(M"^YM^ )^] 

+ [tr(M"^YM^ (1+8) 

It becomes convenient to define a certain function as follows : Let 

T[Z] = tr[Z-Z] + [tr(Z)]^ (1+9) 

Then equation 48 can be expressed more compactly as 

[(norm)^ of - variance] = T[(M''^YM^ )^] (50) 

The norm for other values of n depends upon Just how X is formed. The 
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estimate of H involves X ^ $ _X ,+H , where H is some 
n n-1 n-1 n-2 n-1 n-1 n-1 

sort of an average of g, etc. This average greatly complicates 

the expression for the norm. However, if the worst-possible average is 

used, namely H _ = H _, then the norm can be determined rather easily, 
n—J. n—1 

as shown in Appendix D, parts 2, 3, and 4. 

[(nom)^ of - variance]^ = 

The norm of the variance of H , with X . = $ _X ^ 
n' n-1 n-1 n-2 n-1 n-1' 

is expressed as ^ 

p— 1 ^ 1 ^ ^ 
[(norm) of H - variance] = tr{E[— Z (H.-H.)•— Z (H.-H.)]} 

n  E a x  n  X  X  n  j — J  J  

= •—tr{E[ Z (H -H )(H -H ) 
n i=l ^ ^ ^ ^ 

n i-1 ^ 
+2 Z Z (H.-HJ(H.-H.)]} (52) 

i=2 j=l 1 1 ^ ^ 

But, results obtained in Appendix D, part 5, show that many of the cross-

product terms are zero, so 

P _ 1 n ^ -
[(norm) of H - variance] = tr{E[ Z (H.-H.)(H.-H,) 

D m&x XX XX 
n X—1 

n . 

+22 (H -H )(H -H )]} (53) 
i=2 ^ ^ 
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n 1=1 

m ^ 

-T[»^M-^^Ï._^M^_J]1) (51.) 

Since the number of terms varies as some multiple of n and the overall 

summation is multiplied by then at least one requirement for conver-
n 

gence of is satisfied. If, also, the system is asymptotically stable, 

then does converge to 

There are a few points which should be examined if a number of esti­

mates of H are to be averaged together in the expectation of converging 

towards the true response matrix. For the averaging process to be at all 

successful, H must be virtually constant during the effective averaging 

period. Examine the complete equation for 

^n = /" /" $(t^,T^)B(Tj_)E[u(T^)u'^(T2)] 

^n-1 ̂ n-1 

• B^(T2)$^(t^,T2)dT^ dTg (55) 

Those factors which must remain virtually constant (assuming that a varia­

tion in one factor is not offset by variations of others) are the interval 

between measurements, the transition matrix for a full interval, the input 

matrix, and the input variances. 

2. Solution when M is vertical 

When is vertical, i.e., redundant measurements are made, the solu­

tion of equation 44 for is à bit more difficult, A matrix identity 
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from Appendix E is used to convert equation 4^ to a form which can be 

simplified by pre- and post-multiplications. 

+ Q)~^ (56) 

where 

so 

Si 
T T 

=  V  + M $ X  M  
n n n n-1 n n 

M 

Equation UU becomes 

0 = M^Q"^(Y-yy^) 

Q-^ M[MV^M + E'h 
H + H 
n n 

Xn_l " Xn_l 

which can be reduced to 

(57) 

(58) 

(59) 

0 = [MV^(y-yy^)Q"^]^ 

«n-^«n 

Xn-l + Xn_l 

and solved for''H 
n 

= {[(MV^)"VQ~^](yy^-Q) 

Xn_l " Xn_l 

(60) 

(61) 

The only difference between this equation and equation U5, for which M is 

square, is that M~^ has been replaced by [(M^Q~^)~^^Q~^] , Thus all of 
n 
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the results obtained in the preceding sub-section are valid when M is 

vertical, provided this substitution is made. 

It would seem that this estimator has the serious disadvantage of 

being too difficult to use, except on very simple systems. 

a. Alternate estimation method Since the direct 'application of 

the MP estimation method leads to a result of some complexity when is 

vertical, it may be advantageous to investigate an alternative. Let the 

T 
MP estimation method be applied to finding an estimate for (MHM and 

then solve for H . Thus, instead of finding an estimate of the H matrix 

which is "most likely", an estimate of the H matrix is found that causes 

T 
the estimate of (l^HM ) to be "most likely". 

3 p(y^) 

3 
n 

= 0 

\ «n 

Xn_l + Xn_l 

0 = [Y"^(Y-yy'^)Y"^] 

(MHM"^)^ =(yy^-Q)^ 

n 
+ Hn' Xn-1 n-1 

n-1 n-1 

H = {[(M'^M)"^^](yy^-Q)[M(M^M)"^]} 
n n 

Vl = Vl 

(62) 

(63) 

This result differs from the MP estimate of only to the extent that the 

q"^ factors have been eliminated, so once again all the results obtained 

in the sub-section covering the square M-matrix case are valid if is 

replaced by [(M^M)~\i^]^. The elimination of the Q-inverses should greatly 

ease the computational task. 
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3. Solution when M is horizontal 

When is horizontal, the system is not observable (4,6), and there 

is an infinite set of right-hand inverses for it. Thus, equation 44 

reduces to 

T 
° = Wn 

«. " »n- \-l " "n-l 

m m 

Wn = % - Si (6U) 

^n-1 ^n-1 

At this point it is seen that cannot be found uniquely since there is 

T. T 
no way to pre- and post-multiply (MHM ) such that M and M are eliminated. 

This is equivalent to the ordinary algebraic situation,of having more un­

known quantities (corresponding to elements of H^) to be determined than 

there are independent equations. This does not mean that H cannot be 
n 

estimated. On the contrary, an infinity of estimates can be made. It 

just means that there is no way of knowing how good any particular esti­

mate is, unless other information is supplied. Any of these estimates can 

be represented by 

= [right-hand inverse of M^](y^y^-^) [right-hand inverse of (65) 

Among the infinite set of right-hand inverses of is one that causes the 

2 
(norm) of the variance of to be minimum, but there is no way of find­

ing it unless is already known. 

One particular estimate that is unique in a certain respect is obtain-

T T —1 
ed by letting the right-hand inverse of be ]* the general 

inverse. This results in an estimate for that is "minimum norm" (2); 

that is, tr(H^H^) is smaller when using the general inverse than when 
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using any other right-hand inverse. This estimate may lead to some in­

sight about but it is doubtful that it is of much real use. 

The sort of additional information needed to obtain a unique and use­

ful estimate of is prior knowledge of part of the matrix. To see 

this, partition M and H as follows; 
' n n 

(MHM^) = 
n 1%!^' \a 

«ab < 
4 ̂b 

n 
< 

n 

= (Wa " * WAK 

If the elements of the matrices have been arranged so that only the 

elements of (H ) are unknown, then 
a a n  '  

= Vl - Q. - < + Vab< + 

T _ * 
= Vn - Qn 

(66) 

(67) 

(68) 

Now, if (M^)^ is either square or vertical, (HgaAn determined by 
a n 

the methods already developed; simply replace M by (M ) and Q by 0 , 
n oS* XI .11 11 

B. Maximum-Conditional-Probability Estimation of H 

The MCP estimation of H requires the performance of the following 

operation. 

3 H 
n 

= 0 (69) 

" «n/n 

n—l/n—1 n—l/n—1 

where 
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^n-l/n-1 ^n-l/n-1 J ^ U p ^ p 
n—1 n—1 * n—2/ii-*2 n—2/n—2 

The result is 

(TO) 

^n/n * ^n-l/n-1 ^n-l/n-l 

Due to the similarity of. this equation to equation UU, the solutions for 

H , are similar in form to those obtained for H , the MP estimate of H . 
n/n n' n 

1. Solution when M is square 

When. is square, 

\/n = Wn/„-l - \ - «n^n Vl/n-l'H»»!)"' , 

2. Solution when M is vertical 

When is vertical, the MCP estimate for is the same as equation 

71 with replaced by the factor [ (M'^^ 

where 

â» = v. + «„*n Vl/n-i^X 172) 

The alternate estimate is the same as equation 71 with replaced by 

the factor [(M^M 
n n n 

3. Solution when M is horizontal 

When M is horizontal, the "minimum norm" estimate of H can be ob-
n ' n 

tained by replacing in equation 71 by enough 

elements of are already known, then the unknown portion can be estimated 

by means of matrix partition and rearrangement of terms to get the equation 

into the form where the methods used on the square or vertical matrix 

can be used: 

' Wa'n = - K (73) 
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where 

* vlA*(Tt) 

4. Determination of norms 

The norm of the variance of cannot be easily determined due to 

the complexity of P , , However, as in the situation of section IV 
n—x/n—X 

where V is estimated by the MCP method, the minimum possible norm would 

occur if F were exactly 

[(norm)^ of - variance= T[(M~^CM^ )^] (75) 

Equation 75 is the minimum-norm case when M^ is square. The other norms 

can be obtained by the proper substitutions for Since 

tr(Fn-l/n-l'^n-l/n-l) - tr(%n_i'%n-l)* 

the MCP estimation method should be better than the MP estimation method, 

2 * 
and the actual (norm) of the - variance would be expected to-be 

2 2 
between the minimum-possible MCP (norm) and the maximum MP (norm) . 
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VI. ESTIMATION OF BOTH THE MEASUREMENT-ERROR AND RESPONSE COVAHIAKCES 

The situation postulated, in this section is that the measurement-

error covariance matrix, V, and the response covariance matrix, H, are 

both unknown. 

A. Maximum-Probability Estimation of V and H 

Maximizing the unconditional probability density function with respect 

to both V^ and results in the two equations, 

Vn 
V 
n n 

\ «n 

y (76) 

V 

There is no possibility that solutions may be obtained for V^ and H^, as 

things stand, since the equations are not independent. Additional condi­

tions or information are needed. 

Since V^ and are both r-by-r matrices, the number of unknown 

T 
elements of V^ equals the number of known elements of or y^y^. The 

number of unknown elements of H may be greater than, equal to, or less 

than the number of known elements, depending upon whether M^ is horizontal, 

square, or vertical, respectively. Therefore, some way must be found to 

reduce the number of unknown elements in V^ and possibly some elements of 

H^ will have to be known, particularly if M^ is not vertical. 

Until now, the assumption has been that the measurement errors might 

be mutually correlated (dependent), but not correlated in time. In many 

systems, the measurement errors will be completely uncorrelated 



www.manaraa.com

32 

(independent) and V will be a diagonal matrix in such cases. For such a 
n 

system, the number of unknown elements of is reduced from ̂ r+l)r to 

just r, and the equations to be solved are expressed, using notation of 

Appendix B, as 

0 = 

V •> V 
n n 

\-l ^n-1 

y (77) 

These two equations are independent, so a solution is possible if is 

vertical. Proceeding, 

^ rp rp _ T T 
V = D[y y - M H M - M * X ,$ M ] 
n ^n n n n n n n n-1 n n 

(78) 

and, using the methods of section V, 

= [(MV^)"^MV^]^(yy^-Q)^[MQ'^[MQ"^(MV^O] 
V V 
n n 

^n_l " ''n-l 

(79) 

The nature of the D[ ] operation prevents one from substituting equation 

78 directly into equation 79 in order to eliminate and solve for 

The presence of so many Q's, which are functions of V, also prevents one 

from substituting equation 79 into 78 and solving for V^. 

The alternate estimation method developed in section V can be tried 

as a means of obtaining the solutions. Thus, instead of equation 79» use 
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(80) 
V -»• V 
n n 

^n-l Vl 

If equation 80 is substituted into equation 78, considerable cancellation 

of terms occurs and the result is 

t - "'Wnl = 

where 

N = M (M^M 
n n n n n 

(N^ is an idempotent matrix.) 

A typical element of can be expressed as 

so a typical diagonal element is 

(D[TOl^)„ = a (83) 

This can be put back into matrix notation as 

"[Wnl = 'Vn' (Ski 

Thus, 

c[V^l c[V„] = o[yj^y® -

c[V^] = d-VIn'"^ "IVn - "nVX' 

With this solution for V^, it is then a relatively simple matter of sub­

stitution into equation 80 to evaluate 

A 
The expected value of c[V^] is 
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E[c[lj] = E[c(y_,y;^ - N^vX'' 

= =[ VWnl 

= (I-N *I)»M )"^ c[V -N V N ] 
n n n n n n 

= c[V^] (87) 

so this estimate is unbiaseosi. 

Results obtained in Apjgipendix F enable the norm to be expressed, 

[(norm)^ of - variance] = tr{EC (V^-V^)(V^-V^) ]} 

= 2 tr{(l-N*W;ra)"^[r*ï-2(YN)*(YN) + (NYN)*(NYN)](l-N*N)"^}^ 

(88)  

The norm of the varianonee of 7^ involves the expected values of cross-

A A 
products such as ), as shown in equation 30, but for the 

particular estimation niethoooi being used in this section, all of these 

cross-products have expecteosd. values which are zeros, 

tr{E[(Vj^-Vj(Vj_Vj:g)]} =0 , fcr i ^ j (89) 

This is demonstrated in Appeoendix F, Consequently, 

? — 1 ^ 2 "" 
[(norm) of V - variance] =» = —r E [(norm) of V. - variance] (90) 

" n i=l ^ 

A 
The development of the s norm expressions for the variances of and 

K is rather difficult sincece the estimates of the V's are involved, 
n 

Fortunately, these norm expïçressions are not required for the purpose of 

investigating whether or noDot convergence of the averaged estimates can 

occur. Equations 88 and 90 0 indicate .that averaged estimates for the V's 
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are expected to converge when the system is asymptotically stable. So, 

when n becomes large, differs from by negligible amounts and the 

situation becomes virtually the same as postulated in section V where 

H is estimated when V is known. Therefore, the condition for conver-
n n ' 

gence of is that the system be asymptotically stable, 

B, Maximum-Conditional-Probability Estimation of V and H 

When the conditional probability density function is maximized with 

respect to and H^, much the same problems arise as with the MP estima­

tion method. The only difference is that X is replaced by P , ^ and 
n n/n—1 

"y Wn-V 

K / n  '  [  ( A ) " ( 9 2 )  

The minimum norm for the variance of V is 
n V • 

[(norm)^ of - variance]^^^ = 2 tr{(l-N*N)"^[C*C-2(CK)*(C]J) 

+ (UCN)*(NCÏÏ)](I-N*II)"^} (93) 
n 

The minimum norm for the variance of H is 
- n 

[(norm)^ of H - variance] . = T[ (M^M)''Vc M(M^M)"^] (9%) 
n mm n 

As has been stated in other sections, the actual norms of the variances 

will be greater than these minimum-norms and, if enough measurements are 

used to obtain good averages of estimates, the actual norms should-be less 

than the worst-case norms obtained for the MP estimates. 
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VII. SUMMARY MD CONCLUSIONS 

By the process of choosing those values for and/or which are 

most probable (i.e., cause a probability density function to be maximum) 

and then averaging, reasonable estimates can be found for the measurement-

error covariance matrix, V, and/or the response covariance matrix, H. 

When the initial system-state covariance, X^, is known for the MP estima­

tion method, or is known for the estimate of x^ when using the MCP 

estimation method, then all of the estimates are unbiased. 

The individual estimates (prior to averaging) which were developed in 

the preceding sections are summarized as follows : 

1. When V is unknown, the t-IP estimate is 

^ m m 

\ = % - Wn 

and the MCP estimate is 

\ " ̂n/n-l^n/n-l " Vn/n-l"n 

where ^ is a function of previous estimates of V. 

2. When H is unknown, the MP estimate is 

». = ' 

if is square; 

if M^ is vertical and the inversions are not too difficult, or 

= [(M^M)-V]^(y^y^ - Q^)[M(M^M)"^]^ 

if M is vertical and Q is not easily inverted; or 
n n 
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- Q^)[ 

which is the minimum-norm estimate if M is horizontal. If 
n 

enough of the elements of H are known, matrix partitioning 

may be used to convert from a situation in which is horizontal 

to one in which the techniques used for being square or verti­

cal can be applied. The MCP estimates are similar to the MP 

estimates:^ is replaced by and y^ is replaced by y^ in the 

equations. 

3. When both V and H are unknown, but M is vertical and V is known 

to be a diagonal matrix, the MP estimates are 

"n = 

and the MCP estimates are similar, with X , replaced by P -, , 
n-l n-l/n-l 

'b 
and y^ replaced by y^. 

The MP estimators are the easiest to use, but the accuracies to be 

obtained are not expected to be as good as those obtained by use of the 

MCP estimators. The MCP estimators are considerably more difficult to 

apply since, at each measurement time, averages of previous estimates must 

be substituted into the Kalman filter equations to find approximations to 

the W and P matrices and make a priori estimates of the y's. Of course 

the ultimate objective is to form these Kalman filter parameters so that 

the state vectors can be estimated, so there is no particular saving in 

computational labor by using the MP estimators instead of the MCP 

estimators. ^ 
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The examinations made of the estimation-variance norms result in the 

conclusion that all of the averaged estimates converge if the system is 

asymptotically stable and the parameters being estimated are time-

stationary, or nearly so. Thus, there would appear to be no reason why 

these estimators could not be used to adapt a Kalman filter to a system 

with unknown V and/or H which may be varying in time slowly with respect 

to the measurement sampling rate. 
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X. APPENDIX A 

Differentiations of certain matrix functions with respect to a matrix 

are required. The procedure used is to perform the differentiation with 

respect to a general element of the matrix first, using summation notation, 

and then converting to the equivalent statement in matrix notation. 

The following symbology is used; if Z is a matrix, then: 

1. |z| denotes the determinant of Z, 

2. or (Z)^j denotes the ij'th element of Z, 

3. IZj^l denotes the cofactor of or (Z)^j. 

- mn 11J 

3Z 
adjoint (Z) 

2. z 
3z 
mn i,jL 

3z 
mn 

= |(Z+B) 
nm 

^ ̂ ^ = adjoint(Z+B) 

„ 3|EZF+B| . „ 
^ 3^ 

ran i,j 

^ij) 

3z 
mn 

|(EZF*B)jJ= E 

^ 90 

3 EZF+BÎ ^ E^[adjoint(EZF+B)]F^ 
3Z 

L 4^ =a^T#-b = a^s = ab 
— 3z 

mn 
3z 
mn 

mn m n 

where e is a matrix that has zeros for all its elements except for the 
mn 

mn'th element which is one. 
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r. 3(Z-Z"^) _ 3Z „-l „3Z"^ _ 9(1) _ 
^ — — 2 ^ 3i ° 

mn mn nm nn 

.-. |£i = . z-l ̂  z-^ = . z-le Z-: 

'V 

h. = - (^V) v(z-^) = - (z^ 
mn 

.-. , .zT'\ zi'^ 

mn . 

8. (EZF+B) Hi ̂  _ a'''(EZF<-B)~^Ee FCEZP+BTH 
— oz mn 

mn 

.'. (EZF+B) _ _ e'^(ezF+B)'^ ab^(EZF+B)^ 

9. Example of matrix differentiation problem 

Some of the preceding matrix derivatives are employed in finding the 

derivative of a somewhat more elaborate function, of which the multivariate 

Gaussian probability density is a special case. 
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- i - i[a^(EZF+B )~^] 
IEZF+BI e 

3Z 

^ _ 1 E^[ad.joint(EZF+B)]F^ " 2^^ (EZF+B) 

^ |ezf+B|^^^ 

- I - I [a^(EZF+B)"^] 
+ EZF+B I e 

m m m 

• E (EZF+B) ab (EZF+B) F 

- è - |[a^( EZF+B )"\] 
= - EZF+B I e 

rp m m m m m m 

• [ E (EZF+B) F - E (EZF+B) ab (EZF+B) 
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XI. APPENDIX B 

Some non-standard matrix operations are required in order to express 

certain relationships which the standard matrix operations cannot express. 

If Z is a square matrix, then D[Z] is defined to be a square matrix 

whose major diagonal elements are identical to the corresponding major 

diagonal elements of Z and whose off-diagonal elements are all zeros. 

If Z is a square matrix, then c[Z] is defined to be a column vector 

whose elements are the corresponding major diagonal elements of Z. 

If T and Z are two matrices with the same numbers of rows and columns, 

then (T*Z) is defined to be a matrix, also with the same numbers of rows 

and columns, whose elements are the simple products of the corresponding 

elements of T and Z. 

Certain useful relationships between these defined operations are: 

1. D[Z] = Z*I 

2. D[c[Z]'l^] = D[Z] 

3. l^*(Z*Z)'l = tr(Z'Z^) 

k. (Z*Z)'l = c[Z'Z^] 
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XII. APPENDIX C 

The expected values of two different matrix products involving 

estimate of V are required. 

1. The variance of V 

E[(V-V)«(V-V)] = E[(yy^ - ï)*(yy^ - ï)lj, 

= (2(Ï)=J + - 2(Y)ij + 

= (ï)fj Mï)ii(ï)jj 

E[(V-V)if(V-V)] = (ï*ï) + c[Y]'c[Y]^ 

2. The norm of the variance of V 

[(norm)^ of V - variance] = tr{E[(V-V)(V-V)]} 

E((v-v).(v-v)] = E[(jy''-ï)(yy''-ï))jj 

= ^ l!)ij(?)kk] - (T'ik'T'kj) 

= î[(ï).k(ï)kj Mï)ij(ï)kj,] 

y 

E[(V-V)(V-V)] = Y«Y + Y tr(Y) 

[(norm)^ of V - variance] = tr[Y'Y + Y tr(Y)] 

= tr(Y'Y) + [tr(Y)]2 
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XIII. APPENDIX D 

The expected values of several products involving estimates of H's are 

needed. These are determined in the following sub-sections, for a square 

M. 

1. Norm of variance 

[(norm)^ of H^-variance] = tr{E[]} 

VHl = - ̂ l)f^ 

E[(y^y^ - Y^)M^ 

{E[(yy^-Y)M^ M"^(yy^-Y)] } 
1 

—1 "1 

-(ÏM® ' 

E[(H^-H^)(H^-H^)] = M~^[YM^ M'^Y + Y tr(YM^ 

= (M'^YM^ )^[(M~^YM^ )^ + I trCM"^"^ )^] 
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[(norm)^ of H^-variance] = tr[(M"^YM^ )^] 

+ [tr(M~^YM^ )J^ 
i. 

-1 T-^ • =  t [ ( M W  ) ^ ] ,  

as defined by equation 4$. 

A 
2. Norm of H^-variance 

Hg-Hg = [M"^(yy^-V)M^ 

= [M"^(yy^-Y)M^ 

= [M~^(yy^-y)M'^ ]g - $2[M"^(yy^-Y)M^ 

tr{E[(H2-H2)(H2-H2)]} = T[(M"V )g] + T[$g(M"V 

- 2 tr{M-^ E[(yy^_Y)gMg $2M^^(yy^-Y)^]M^ $g} 

E[(yy'^-Y)gMg $gM^^(yy^-Y)^^] 

= E{[(M2$2X^ + Mggg + Vg)(Mg$gX^ + Mggg + Vg)^ 

- Mg^gX^^gMg - MgHgMg - Vg]Mg $gM^^ 

[(M^x^ + v^)(M^x^ + - Vi]} 

= Mg$g[Xi(*T$g)Tx^ + X^ tr($2$gX^)]Mj 

[(norm)^ of Hg-variance] = T[(m"^YM^ )g] +-^g(ir^YM^ j^Og] 

- 2 ftW2' 
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3. Norm of H_-variance 
j 

Hg-Hg = [M"^(yy^-V)M^ 

Then, if Xg = $2%i*2 + ̂ 2 • 

,-1, T „s..T"^ 
Hg-Eg = [M (yy -Y)M-^ 

Hg-Hg = [M~^(yy^-Y)M^ 

-$2{[Mr^%yy^-Y)M^ ]g - $2[M~^(yy^-Y)M^ ^1^2^*3 

= [M"^(yy^-Y)M^ - OgtMT^fyy^-YjMF jgOg 

Since the form of this equation is the same as for (Hg-Hg), then the 

resulting norm of the- variance of should also be the same form as the 

norm of the variance of Hg. 

-1 -1 

[(norm)^ of H -variance] = T[(M"^Ym'^ ) ] + T[<f (M"^YM^ ) $^] 

- 2 TLo^XgOg] 

4. Norm of H^-variance 

By induction, the norm of the variance of can be specified provided 

— — T 
that X ,=$ ,X _$ n+H T With this stipulation on how previous 

n—1 n—JL n—2 n—1 n—1 

estimates of H are incorporated, the norm expression is 

[(norm)^ of H -variance] = T[(M ^YM^ ) ] + T [$ (M ^YM^ ) ^ 
n n n n**x n 
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5. Norms of cross-products 

n-1 

E[(H-H )(H -H )] 
1 1 1—1 1—1 

~ *i*i_l[%i_2*i-l*i*i-l%i-2 ^i-2^'^*i-l*i*i-l^i-2^ ̂*i-l 

"•1 
{(nonii)^ofE[(H.-H.)(H^_^-H._^)]}= - ^[*£«1^1^1^1-1^ 

E[(H.-Hi)(Hj^Hj)] 
i>j+l 

= E{[[M'^(yy^-Y)M^ .]^ - $^[M"^(yy^-Y)M^ ^i-l*i^ 

• [[M"^(yy^-Y)M'^ ]j -•'i'j[M"^(yy^-Y)M^ 
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XIV. APPENDIX E 

The development of a matrix inversion lemma, essentially as given by 

Horst (2), is presented here because it also suffices to provide a matrix 

identity which is of some use. 

If Y = Q + 

then I = QY"^ + MHM^Y"^ 

-1 T -1 
QY = I - MHM Y 

Y~^ = Q"^ - Q"-SfflM^Y"^ (El) 

Y"^ + = Q"^ 

M^Y"^ + M^q""WM^Y~^ = M^Q"^ 

(H"^ + M^Q"^M)HM^Y"^ = M^Q"^ 

HM^Y"^ = (H"^ + (E2) 

Thus, the matrix identity is 

M^Y'^ = h"^(H"^ + M^Q"^)"VQ"^ 

The matrix inversion lemma results from substituting equation E2 into 

equation El. 

Y"^ = - q~^(H"^ + M\~^)"VQ"^ 
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XV. APPENDIX F 

Certain norm expressions are required for the estimate of V obtained 

in section VII where V is known to be diagonal and M is vertical, 

1. Norm of variance of V 

c[V-V] = (l-K*N)"^'c[(yy^-Nyy^W) - (V-NVN)] 

[(norm)^ of V-variance] = tr{E[ [V-V]*c[V-V]^]} 

= tr{(l-lI*N)'"^E[c[yy^-Nyy^N - V + NVU] 

•c[yy^-Kyy^W - V + WVN]^](I-N*M)"^} 

{ E [ c[yy^-Hyy^W-V+NVW]•c[yy^-Wyy^W-V+KVN]^]}. 
^ J 

= G'tri -

= (Y-NYK-V+NVlO..'(Y-NYW-V+NVN) 
XI jJ 

+ 2(Y)2j _ 2(YN)2j _ 2(NY)^J + 2(NYll)^j 

= 2[(Y)2j _ 2(YN)2j + (MYM)2j] 

[(norm)^ of V-variance] = 2 tr{(l-W*N)"^[Y*Y-2(Yïï)*(YN) 

+ (ÏÏYN)*(NYN)](I-N*N)"^} 
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2. Norm of cross-products 

[(norm)^ of (V -V )(V.-V.)] = tr{E[c[V -V ]'c[V,-V.]]} 
n n i i  n n  i i  

- "I*Vn-• Vn-•• W 

+ 2(W M $ )*(N M $ 
n n n i+l i i i n n n i+l i i i 

= 0 

In the above development, n > i. 
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